Multiple Choice
Write the letter that best answers the question or completes the statement on the line provided.

___ 1. Gregor Mendel used pea plants to study
 a. flowering. c. the inheritance of traits.
 b. gamete formation. d. cross-pollination.

___ 2. What are Mendel’s factors called today?
 a. alleles c. genes
 b. traits d. characters

___ 3. The principle of dominance states that
 a. all alleles are dominant.
 b. all alleles are recessive.
 c. some alleles are dominant and others are recessive.
 d. alleles are neither dominant nor recessive.

___ 4. When Mendel allowed the tall F₁ pea plants \(Tt \) to self-pollinate,
 a. the offspring were of medium height.
 b. all of the offspring were tall.
 c. all of the offspring were short.
 d. some of the offspring were short.

___ 5. Two plants with the genotypes \(TT \) and \(Tt \)
 a. would have the same phenotype.
 b. would have different phenotypes.
 c. have all dominant alleles.
 d. have all recessive alleles.

___ 6. Organisms that have two identical alleles for a particular trait
 are said to be
 a. hybrid. c. heterozygous.
 b. homozygous. d. dominant.

___ 7. What principle states that during gamete formation genes for different traits separate without influencing each other’s inheritance?
 a. principle of dominance
 b. principle of independent assortment
 c. principle of probabilities
 d. principle of segregation
8. The Punnett square in Figure 11-1 shows that the gene for pea shape and the gene for pea color
 a. assort independently.
 b. are linked.
 c. have the same alleles.
 d. are always homozygous.

9. Situations in which one allele for a gene is not completely dominant over another allele for that gene are called
 a. multiple alleles.
 b. incomplete dominance.
 c. codominant alleles.
 d. multiple genes.

10. Mendel’s principles of genetics apply to
 a. plants only.
 b. animals only.
 c. pea plants only.
 d. all organisms.

11. The number of chromosomes in a gamete is represented by the symbol
 a. 2N.
 b. X.
 c. N.
 d. Y.

12. Gametes are produced by the process of
 a. mitosis.
 b. meiosis.
 c. crossing-over.
 d. replication.

13. Unlike mitosis, meiosis results in the formation of
 a. diploid cells.
 b. haploid cells.
 c. 2N daughter cells.
 d. body cells.
14. Traits that are produced by the interaction of several genes are said to be
 a. polygenic. c. haploid.
 b. codominant. d. diploid.

15. Gene maps are based on
 a. the frequencies of crossing-over between genes.
 b. independent assortment.
 c. genetic diversity.
 d. the number of genes in a cell.

Completion

Complete each statement on the line provided.

16. The different forms of a gene are called ________________ .

17. ________________ is the likelihood that a particular event will occur.

18. In the Punnett square shown in Figure 11-2, the genotypes of the offspring are ________________ .

19. The principle of independent assortment states that ________________ for different traits can segregate independently during the formation of gametes.

20. Meiosis produces four genetically different ________________ cells.

Short Answer

In complete sentences, write the answers to the questions on the lines provided.

21. Define genetics.

22. How many sets of chromosomes are in a diploid cell?

23. Define homologous chromosomes.

24. What happens to the number of chromosomes per cell during meiosis?

25. Why did Mendel not observe gene linkage during his experiments with pea plants?
26. Inferring What do the letters R and I represent in Figure 11-3?

27. Interpreting Graphics In Figure 11-3, what is the genotype of the pink-flowered snapdragons?

28. Inferring Explain whether the alleles in Figure 11-3 show dominance, incomplete dominance, or codominance.

29. Inferring According to Figure 11-3, if red-flowered snapdragons and ivory-flowered snapdragons are crossed, what percent of their offspring are expected to be pink-flowered?

30. Inferring According to Figure 11-3, if two pink-flowered snapdragons are crossed, what percent of their offspring are expected to be pink-flowered?